Variations in Sea Surface Roughness Induced by the 2004 Sumatra-Andaman Tsunami

نویسندگان

  • O. A. Godin
  • V. G. Irisov
  • R. R. Leben
  • B. D. Hamlington
  • G. A. Wick
چکیده

Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track. Correspondence to: O. A. Godin ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Analysis of Jason-1 Sea Surface Height and Backscattering during Sumatra-adaman Tsunami

The existing tsunami warning system is based primarily on registration of underwater earthquake events. Unfortunately this approach has intrinsic drawbacks: the relationship between quake force and tsunami intensity/propagation is complicated and not clear. Another approach relies on direct measurement of tsunami wave height by detection of pressure change near the bottom. Such a buoy network i...

متن کامل

Surface Effects of the 2004 Indonesian Earthquake and Tsunami from SAR data

On December 26, 2004, at 00:58 GMT a Mw 9.0 earthquake took place in the Indian Ocean, offshore the West coast of Sumatra, at a depth of about 30 km. This earthquake is one of the largest events of the last 100 years, comparable only to the Chile 1960 and Alaska 1964 ones. The earthquake originates in the subduction zone of the Indian and Burma plates, moving at a relative velocity of 6 cm/year...

متن کامل

Seismological Aspects of the December 2004 Great Sumatra-Andaman Earthquake

The 2004 Great Sumatra-Andaman earthquake had an average source duration of about 500 sec. and a rupture length of 1 ,200–1,300 km. The seismic moment, M0, determined with a finite source model, was 6.5 1022 N-m, which corresponds to Mw=9.18. Allowing for the uncertainties in the current M0 determinations, Mw is in the range of 9.1 to 9.3. The tsunami magnitude Mt is 9.1, suggesting that the ov...

متن کامل

Wavelet analysis of the seismograms of the 2004 Sumatra- Andaman earthquake and its application to tsunami early warning

[1] We applied the wavelet transform in an attempt to detect long-period components early in a seismogram. We analyzed the displacement seismograms of the 26 December 2004 Sumatra-Andaman earthquake (Mw = 9.2) and the 28 March 2005 Nias earthquake (Mw = 8.7). Wavelet analysis is able to clearly distinguish the amplitudes of the long-period W phase between the seismograms of the two earthquakes ...

متن کامل

Implications of the 26 December 2004 Sumatra–Andaman Earthquake on Tsunami Forecast and Assessment Models for Great Subduction-Zone Earthquakes

Results from different tsunami forecasting and hazard assessment models are compared with observed tsunami wave heights from the 26 December 2004 Indian Ocean tsunami. Forecast models are based on initial earthquake information and are used to estimate tsunami wave heights during propagation. An empirical forecast relationship based only on seismic moment provides a close estimate to the observ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016